
FORCulator

1. Anisotropy: Uniaxial or Cubic. Other options will be made available in future versions.

2. Simulation Type: Quasi-static Stoner-Wohlfarth approach (uniaxial only) or LLG. LLG uses an 
approximate iterated solution to the Landau-Lifshitz-Gilbert equation to obtain the equilibrium 
state at each field. Use LLG for all but the most weakly interacting uniaxial systems.

3. Spatial Arrangement: Random packing or chains. Other options will be made available in future 
versions.

4. Coercivity distribution: Log-normal distribution of switching fields. General user defined 
coercivity distribution will be included in next version.

5. No of FORCs: Set the range of FORC space and field step size to match your experimental 
measurements. 

6. No of averaging steps: To get smooth diagrams, the particle ensemble is regenerated based on 
the specified parameters. Resulting FORC diagrams are averaged.

7. Smoothing: The calculated diagrams are processed in the same way that your experimental 
diagrams are processed, enabling direct comparison.

Visit the FORCulator Website: https://wserv4.esc.cam.ac.uk/nanopaleomag/

FORCulator: a micromagnetic tool for simulating first-order reversal curve diagrams
Richard J. Harrison and Ioan Lascu

Department of Earth Sciences, University of Cambridge (rjh40@esc.cam.ac.uk)

Summary
1. We describe a method for simulating first-order reversal curve (FORC) diagrams of interacting 

single-domain particles.

2. Magnetostatic interactions are calculated in real space, allowing simulations to be performed for 
particle ensembles with arbitrary geometry.

3. The equilibrium magnetization is calculated using an approximate iterated solution to the 
Landau-Lifshitz-Gilbert equation. Multithreading is employed to allow multiple curves to be 
computed simultaneously, enabling FORC diagrams to be simulated in reasonable time using a 
standard desktop computer.

4. Statistical averaging and post processing lead to simulated FORC diagrams that are 
comparable to their experimental counterparts.

5. The method is applied to several geometries of relevance to rock and environmental 
magnetism: densely packed random clusters and partially collapsed chains.

6. The method forms the basis of FORCulator, a freely available software tool with graphical user 
interface that will enable FORC simulations to become a routine part of rock magnetic studies.
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Densely packed random clusters
1. Strongly interacting uniaxial clusters show ‘teardrop’ and ‘wishbone’ structures.

2. Integrated horizontal profiles match input switching field distribution for uniaxial particles.

3. Integrated horizontal profiles DO NOT match input switching field distribution for cubic particles.

4. Vertical profiles show a systematic broadening with packing fraction.

5. Horizontal and vertical profiles are provide a good estimate of the physical parameters of the 
ensemble for uniaxial particles.

6. Calculated FORC diagrams for strongly interacting SD clusters are similar to FORC diagrams for 
non-interacting PSD. A good analogue?

Uniaxial Cubic

Chains of particles: effect of chain collapse
1. Chains created using a constrained, self-avoiding random walk.

2. Collapse factor c varies continuously from 0 (straight chains) to 1 (collapsed chains).

3. Uniaxial easy axes are tangential to the chain axis.

4. Overall coercivity of chains is a strong function of collapse factor.

5. ‘Wings’ develop and increase in intesnity with collapse factor.

6. Collapsed chain ≠ Random Cluster!

Non-interacting particles with cubic anisotropy (111 easy axes)
1. Non-interacting cubic particles share some of the FORC characteristics of non-interacting uniaxial 

particles:

i. A ridge of intensity close to the Bu = 0 axis (‘1’).
ii. Positive and negative background signals for Bu < 0 (‘2’ and ‘3’)
iii. No signal for Bu > 0.

2. Some key distinguishing features are present, however:

i. The peak of the FORC distribution is displaced slightly (< 0.5 mT) to negative Bu values.
ii. A new negative signal (‘4’) appears above the remanence diagonal.
iii. A small region of weak, but statistically significant, positive signal (‘5’) appears.

(b) c = 0 (c) c = 0.3

(d) c = 0.7 (e) c = 1
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interactions, obtaining p ! 0.1 as an estimate of the
effective packing fraction. A fit of the same profile using
equation (8) with default parameters provides a close match
to this estimate (Figure 7). The validity range of equation (8)
is specified by si " 2sc and si " 2mc. Approximated
values of si, sc, and mi can be obtained directly from the
FORC diagram. The conditions si < sc and si < mc are valid
for all examples presented in this paper, and the use of
equation (8) as a model for the FORC function is justified.
For example the low- and high-coercivity components of
Figure 3 are characterized by si ! 10 mT, sc ! 15 mT,
mc ! 30 mT, and si # 3 mT, sc ! 15 mT, mc ! 50 mT,
respectively. Therefore we will use (8) to obtain rough
estimates of p needed to estimate the effect of the interaction
field on ARM measurements.

[22] Since the FORC diagrams of MV1-GRIDS and
MV2-GRIDS are clearly bimodal, profiles of the FORC
function along Hu are modeled using a linear combination
of m functions of the type given in (8):

g Huð Þ ¼
X

m

k¼1

akW
Hu ' Hm;k

0:6
; pk ; 1:354ms; 0:5

! "

ð9Þ

whereby ak, Hmk, pk are chosen to minimize the squared
fitting residual

d2 ¼
Z

Hu

r Hc;Huð Þ '
X

m

k¼1

akWk Huð Þ
" #2

dHu ð10Þ

Figure 3. (a) FORC diagram of sample MV1-GRIDS. (b) Normalized FORC function, as defined by
equation (5). (c) Profile r(Hc, 0) of the FORC function along the Hc axis and marginal distribution rc(Hc).
(d) Cumulative marginal distribution (see text). Contour lines of Figure 3b are expected to have a similar
shape for the case of randomly dispersed particles. (e, f) Profiles of the FORC function at Hc = 30 mT and
Hc = 52 mT (solid line), fitted using two components (dotted lines) according to equation (9). The sum of
the two components is indicated by the dashed line.

B08S90 CHEN ET AL.: FORC OF BIOGENIC MAGNETIC PARTICLES

6 of 13

B08S90

Chen et al. (2007)
Collapsed chains

Fire obsidian (PSD) Lake sediment with collapsed 
chains

Oxidised olivine with 
magnetite chains on 

dislocations

Conclusions

1. Geometry-specific FORC signatures provide 
physical parameterization of the particle 
ensemble.

2. Strongly interacting SD clusters have similar 
high-field behaviour to non-interacting PSD 
particles.

3. Chain collapse leads to distinct FORC 
signature that can be recognised in natural 
samples.

100x10-3

80

60

40

20

0

FW
H

M
/µ

0M
s

0.40.30.20.10.0

Packing fraction (p)

 Random Uniaxial
 Random Cubic

Chains of particles: effect of 
interparticle spacing

1. Constant chain collapse factor (c = 0.2), 
increasing interparticle separation.

2. Overall coercivity of chains is a strong function of 
interparticle spacing.

3. Boomerang structure and negative offset for 
intermediate particle spacings. Indicates positive 
mean-field interaction along chain axis.

4. Reduces to non-interacting case for spacings 
more than 5 times the particle diameter.


